Science & Technology



Concrete: A hard material engineers hope to make harder

David Templeton, Pittsburgh Post-Gazette on

Published in Science & Technology News

PITTSBURGH -- For thousands of years, people have built civilizations with concrete made from readily available local materials. Just mix and heat, add some sand, stone and water and put it where you want it. Of course, give it time to harden -- that is, after you have left your hand print or initials.

So it's no surprise that concrete is the world's most widely used building material. Twice as much concrete has been used to build Pittsburgh -- and everything else in the world -- than wood and steel combined. So says concrete expert Julie Marie Vandenbossche, a University of Pittsburgh civil engineer.

But, as it turns out, there's far more to concrete than meets the eye, shoe or tire tread. How these materials glue themselves together, harden and maintain their shape over long periods of time involves common materials and complex chemistry. Various factors influence strength and durability, all the way down to the concrete's concentration of air bubbles.

It explains the continuing academic interest in concrete, with Pitt serving as a research mecca, given its team of four notable research scientists devoted to the hard stuff.

That team includes Vandenbossche and her husband, Mark B. Snyder, a concrete consultant still associated with Pitt. Add Lev Khazanovich, who holds an endowed chair in engineering and recently arrived from the University of Minnesota with a reputation for developing design methods for high-quality, low-cost concrete pavement. Rounding out the team is another recent addition, Steve Sachs, an assistant professor in civil engineering.

Vandenbossche, who holds an engineering Ph.D., said no other university in the nation has as many researchers focused on concrete pavements.

Pitt also has an accelerated loading facility -- or ALF -- working steadily in Pitt's Pavement Mechanics and Materials Lab in Benedum Hall on the Oakland campus. It applies repeated, high-pressure loads on concrete slabs, simulating the physics of heavy traffic. The specialized equipment tests the strength and durability of dowel bars, which are embedded in highway concrete to transfer the load across joints. The ALF is the only such equipment currently being used nationwide to evaluate new, innovative designs and materials for long-life dowel bars, she said.

The team also continues studying concrete-pavement dynamics on Route 22 in Murrysville, with computerized equipment recording temperature, expansion and contraction, and traffic pressures and strains, all of which affect its stability and longevity. "We've used it extensively over the last 10 years," Vandenbossche said, "to study how climate changes affect the structure."

The university's importance in concrete science was most apparent this past summer when it hosted a U.S. Research Board meeting of its Standing Technical Committee on Design and Rehabilitation of Concrete Pavements in June. That meeting occurred simultaneously with the American Concrete Paving Association's mid-year meeting in Pittsburgh, followed by a meeting of the association's board of directors.

"The key to the team here is that we do impactful research in terms of concrete pavement," said Vandenbossche, whose research includes developing concrete overlays. They would allow cheaper repair of highways, much the way new layers routinely are added to asphalt pavement.


swipe to next page


blog comments powered by Disqus