Science & Technology

/

Knowledge

Inside the global race to deliver a vital radioactive isotope used to detect cancer

Sarah Varney, Kaiser Health News, Kaiser Health News on

Published in Science & Technology News

JANESVILLE, Wis. -- In a cornfield here, past the shuttered General Motors plant and the Janesville Terrace trailer home park, a facility not seen in the United States in three decades could soon rise: a manufacturing plant that will make a vital radioactive isotope used to detect cancer and other potentially fatal maladies in millions of people every year.

Nuclear medicine imaging, a staple of American health care since the 1970s, runs almost entirely on molybdenum-99, a radioisotope produced by nuclear fission of enriched uranium that decays so rapidly it becomes worthless within days. But moly-99, as it's called, is created in just six government-owned nuclear research reactors -- none in North America -- raising concerns about the reliability of the supply and even prompting federal scientists to warn of the possibility of severe shortages.

Some 50,000 Americans each day depend on a strange and precarious supply chain easily disrupted by a variety of menaces: shipments grounded by fog in Dubai, skittish commercial airline pilots who refuse to carry radioactive material and unplanned nuclear reactor shutdowns, including one in South Africa when a mischievous baboon sneaked into a reactor hall.

Delays that pose an inconvenience for other commercial goods are existential threats in the daily global relay race of medical isotopes that disappear hour by hour. "It's like running through the desert with an ice cream cone," said Ira Goldman, senior director of global strategic supply at Lantheus Medical Imaging in North Billerica, Mass.

But that race may soon be shortened. Propelled by persistent supply problems and fears that terrorists could seize American uranium en route to foreign facilities, President Barack Obama signed legislation in 2013 prodding American companies into the medical-isotope business.

The $100 million Janesville plant, in the hometown of Rep. Paul Ryan, speaker of the House, is the first construction project to pass through the labyrinthine nuclear regulatory approval process since 1985 and is being built by SHINE Medical Technologies with $25 million in federal funds.

--Sponsored Video--

Greg Piefer, the company's founder and a nuclear engineer (he drives a Tesla with the license plate "NEUTRON"), has big plans for the cornfield: a plant that could manufacture up to 50,000 doses of imaging agent a week. "Ryan called me out of the blue and he said, 'We really want you here,'" Piefer said.

Still, it could be years before moly-99 is manufactured in the United States. SHINE still needs more money to complete its manufacturing plant, and investors are wary of the many problems that can arise during construction. Already, construction deadlines promised by SHINE have come and gone. Other competitors, meanwhile, that received tens of millions of dollars in federal grants to build their own moly-99 manufacturing plants have been thwarted by protracted drug approvals and nuclear regulatory hurdles, and some have given up.

European rivals have also cautioned the American upstarts. At industry presentations, Goldman said, the producers have warned, "This is more difficult than it looks. You can't come up with a fancy slide that says, 'I'm going to be producing moly-99 in a couple of years.'"

The radioactive isotope injected into the veins of potential heart attack victims or bone cancer patients begins its journey in the heavily guarded American nuclear stockpile.

...continued

swipe to next page
 

Comments

blog comments powered by Disqus